1,125 research outputs found

    Turing's three philosophical lessons and the philosophy of information

    Get PDF
    In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe

    Differential observation and integral action in LTI state-space controllers and the PID special case

    Get PDF
    This paper makes the case that practical differentiation of measured state variables may be seen as an observation or estimation scheme for linear time invariant state space controllers. It is shown that, although not having the separation property, the estimation error of this scheme converges to zero if the resulting closed loop system is strictly stable. On the basis of this concept, it is shown that PID controllers may be interpreted as a special case of state space controllers endowed with differential observation. The interesting consequences of this interpretation are discussed.Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/202

    Risk and Utility in Portfolio Optimization

    Full text link
    Modern portfolio theory(MPT) addresses the problem of determining the optimum allocation of investment resources among a set of candidate assets. In the original mean-variance approach of Markowitz, volatility is taken as a proxy for risk, conflating uncertainty with risk. There have been many subsequent attempts to alleviate that weakness which, typically, combine utility and risk. We present here a modification of MPT based on the inclusion of separate risk and utility criteria. We define risk as the probability of failure to meet a pre-established investment goal. We define utility as the expectation of a utility function with positive and decreasing marginal value as a function of yield. The emphasis throughout is on long investment horizons for which risk-free assets do not exist. Analytic results are presented for a Gaussian probability distribution. Risk-utility relations are explored via empirical stock-price data, and an illustrative portfolio is optimized using the empirical data.Comment: 10 pages, 1 figure, presented at 2002 Conference on Econophysics in Bali Indonesi

    A Numerical Method for Conformal Mappings

    Full text link

    The Resonance Peak in Sr2_2RuO4_4: Signature of Spin Triplet Pairing

    Full text link
    We study the dynamical spin susceptibility, χ(q,ω)\chi({\bf q}, \omega), in the normal and superconducting state of Sr2_2RuO4_4. In the normal state, we find a peak in the vicinity of Qi≃(0.72π,0.72π){\bf Q}_i\simeq (0.72\pi,0.72\pi) in agreement with recent inelastic neutron scattering (INS) experiments. We predict that for spin triplet pairing in the superconducting state a {\it resonance peak} appears in the out-of-plane component of χ\chi, but is absent in the in-plane component. In contrast, no resonance peak is expected for spin singlet pairing.Comment: 4 pages, 4 figures, final versio

    Operational distance and fidelity for quantum channels

    Full text link
    We define and study a fidelity criterion for quantum channels, which we term the minimax fidelity, through a noncommutative generalization of maximal Hellinger distance between two positive kernels in classical probability theory. Like other known fidelities for quantum channels, the minimax fidelity is well-defined for channels between finite-dimensional algebras, but it also applies to a certain class of channels between infinite-dimensional algebras (explicitly, those channels that possess an operator-valued Radon--Nikodym density with respect to the trace in the sense of Belavkin--Staszewski) and induces a metric on the set of quantum channels which is topologically equivalent to the CB-norm distance between channels, precisely in the same way as the Bures metric on the density operators associated with statistical states of quantum-mechanical systems, derived from the well-known fidelity (`generalized transition probability') of Uhlmann, is topologically equivalent to the trace-norm distance.Comment: 26 pages, amsart.cls; improved intro, fixed typos, added a reference; accepted by J. Math. Phy

    Quantum Optimal Control Theory in the Linear Response Formalism

    Get PDF
    Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice this normally means optimizing the value of some observable, a so called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization -- the unperturbed Hamiltonian is allowed to be time-dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in term of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for non-equilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.Comment: 7 page

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping

    Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory

    Full text link
    A non-linear conjugate gradient optimization scheme is used to obtain excitation energies within the Random Phase Approximation (RPA). The solutions to the RPA eigenvalue equation are located through a variational characterization using a modified Thouless functional, which is based upon an asymmetric Rayleigh quotient, in an orthogonalized atomic orbital representation. In this way, the computational bottleneck of calculating molecular orbitals is avoided. The variational space is reduced to the physically-relevant transitions by projections. The feasibility of an RPA implementation scaling linearly with system size, N, is investigated by monitoring convergence behavior with respect to the quality of initial guess and sensitivity to noise under thresholding, both for well- and ill-conditioned problems. The molecular- orbital-free algorithm is found to be robust and computationally efficient providing a first step toward a large-scale, reduced complexity calculation of time-dependent optical properties and linear response. The algorithm is extensible to other forms of time-dependent perturbation theory including, but not limited to, time-dependent Density Functional theory.Comment: 9 pages, 7 figure
    • 

    corecore